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1. Lipschitz Selection Problem: Main Settings

• (M, ρ) - a pseudometric space.

Thus, ρ :M×M→ R+ is symmetric and satisfies the triangle inequality,

but ρ(x, y) may admit the value 0 for x , y.

• (Y, ‖ · ‖) - a Banach space.

• BY (a, r) - a ball of radius r > 0 centered at a point a ∈ Y; BY = BY (0, 1).

• Lip(M; Y) - the space of Lipschitz continuous mappings f :M→ Y,
with the seminorm

‖ f ‖Lip(M;Y) := inf{λ > 0 : ‖ f (x) − f (y)‖ ≤ λ ρ(x, y), x, y ∈ M}
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Lipschitz Selection Problem: Main Settings

• Km(Y) - the family of all nonempty convex compact subsets of Y
of dimension at most m.

• F :M→ Km(Y) - a set-valued mapping fromM into Km(Y).

• A (single valued) mapping f :M→ Y is called a selection of F if

f (x) ∈ F(x) for all x ∈ M

• A selection f is said to be Lipschitz if f ∈ Lip(M; Y).
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Lipschitz Selection Problem: Main Settings

• Given A, B ⊂ Y we let A + B denote the Minkowski sum of A and B

A + B = {a + b : a ∈ A, b ∈ B}

• Let A, A′ ⊂ Y. We let dH(A, A′) denote the Hausdorff distance between
these sets:

dH(A, A′) = inf{r > 0 : A + BY (0, r) ⊃ A′, A′ + BY (0, r) ⊃ A} .
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Lipschitz Selection Problem

Let (M, ρ) be a pseudometric space and let F :M→ Km(Y) be a
set-valued mapping .

1. How can we decide

whether there exists a Lipschitz selection of F,

i.e., a mapping f ∈ Lip(M; Y) such that f (x) ∈ F(x) for all x ∈ M?

2. Consider the Lipschitz norms of all Lipschitz selections of F.

How small can these norms be?

This is a purely geometrical problem about a suitable choice of points
in a family convex compact sets in Y indexed by points of the metric
spaceM.
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2. The Finiteness Principle for Lipschitz Selections

Let
N(m,Y) = 2min{m+1,dim Y}

Theorem 1. (Fefferman, Shvartsman [2018], GAFA)

Let (M, ρ) be a pseudometric space and let F :M→ Km(Y).

Assume that for every subsetM′ ⊂ M with #M′ ≤ N(m,Y), the
restriction F|M′ of F toM′ has a Lipschitz selection

fM′ :M′ → Y with ‖ fM′‖Lip(M′,Y) ≤ 1.

Then F has a Lipschitz selection

f :M→ Y with ‖ f ‖Lip(M,Y) ≤ γ(m).
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Helly’s Theorem

Let ρ ≡ 0 onM. In this case the Finiteness Principle holds with

n(m,Y) = min{m + 2, dim Y + 1}.

Indeed, f ∈ Lip((M, ρ),Y)⇐⇒ f (x) = f (y), x, y ∈ M =⇒ f (x) = c onM.

Therefore, F has a selection⇐⇒ ∃ c ∈ F(x) for all x ∈ M⇐⇒
The family {F(x) : x ∈ M} has a common point

Helly’s Intersection Theorem

Let K be a family of convex compact subsets of Y of dimension at most m.

Suppose that for every subfamily K ′ of K consisting of at most n(m,Y)
elements ⋂

K∈K ′
K , ∅.

Then there exists a point common to all of the family K .
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The Core of a Set-valued Mapping: an Example
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The Core of a Set-valued Mapping: Definition

Let (M, ρ) be a metric space and let F :M→ Km(Y) be a set-valued
mapping. Let γ > 0.

Definition 2.

A set-valued mapping G :M→ Km(Y) is said to be a γ-core of the
set-valued mapping F if:

(i) G(x) ⊂ F(x) for all x ∈ M.

(ii) For every x, y ∈ M

dH(G(x),G(y)) ≤ γ ρ(x, y)

In particular, any Lipschitz selection of F with Lipschitz constant γ is a
0-dimensional γ-core of F.
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Claim 3.

Let G :M→ Km(Y) be a γ-core of a set-valued mapping F :M→ Km(Y).

Then F has a Lipschitz selection f :M→ Y with

‖ f ‖Lip(M,Y) ≤ C γ

where C = C(m) is a constant depending only on m.

The proof is immediate from the following result.
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4. Steiner-type selectors

Let K(Y) = ∪{Km(Y) : m ∈ N} be the family of all non-empty finite
dimensional convex compact subsets of Y.

Theorem 4. (Sh. [2004])
There exists a mapping SY : K(Y)→ Y such that

(i). SY (K) ∈ K for each K ∈ K(Y);

(ii). For every K1,K2 ∈ K(Y),

‖SY (K1) − SY (K2)‖ ≤ γ dH(K1,K2),

Here γ = γ(dim K1, dim K2).

We refer to SY (K) as a Steiner-type point of a convex set K ∈ K(Y).

We call SY : K(Y)→ Y a Steiner-type selector.
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Proof of Claim 3.

We define the required Lipschitz selection f :M→ Y of the set valued
mapping F :M→ Km(Y) as a composition of the γ-core G :M→ Km(Y)
and the Steiner-type selector SY : K(Y)→ Y:

f (x) = SY (G(x)), x ∈ M.

Then,
f (x) = SY (G(x)) ∈ G(x) ⊂ F(x)

i.e., f is a selection of F.
Furthermore,

‖ f (x) − f (y)‖ = ‖SY (G(x)) − SY (G(y))‖

≤ C(dim G(x), dim G(y)) dH(G(x),G(y))

≤ C(m) γ ρ(x, y).

This proves that f is a Lipschitz selection of F with ‖ f ‖Lip(M,Y) ≤ C(m) γ.
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5. Basic Convex Sets

The paper ”Sharp Finiteness Principles for Lipschitz Selections”, GAFA,
2018 by C. Fefferman and P. Shvartsman:

Given a set-valued mapping F :M→ Km(Y) satisfying the hypothesis of
the Finiteness Principle for Lipschitz Selections (Theorem 1) we construct
a γ-core with γ = γ(m). We do this in three steps.

Step 1. We introduce a family Γ` :M→ Km(Y), ` = 0, 1, ..., of the
so-called Basic Convex Sets having the following properties:

• (i) Γ`(x) , ∅ and Γ`(x) ⊂ F(x) for every x ∈ M, ` = 0, 1, ...;

• (ii) For all x, y ∈ M and ` = 0, 1, ...,

Γ`+1(x) ⊂ Γ`(y) + BY (0, λρ(x, y))

with some λ = λ(m).
In particular, Γ`+1(x) ⊂ Γ`(x), for all ` = 0, 1, ...

P. Shvartsman (Technion, Haifa, Israel) The core of a set-valued mapping August 5-9, 2019 19 / 112



P. Shvartsman (Technion, Haifa, Israel) The core of a set-valued mapping August 5-9, 2019 20 / 112



Apparently, in general, the family of mappings

Γ` :M→ Km(Y), ` = 0, 1, ...,

is not a core of the set-valued mapping F (for any ` = 0, 1, ... .)
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Step 2. We prove that the Finiteness Principle for Lipschitz selections
holds for any finite metric tree.

The proof relies on ideas developed in the paper

C. Fefferman, A. Israel, K. Luli

”Finiteness Principles for Smooth Selection”, GAFA, 2016.

for the caseM = Rn.

Step 2 is the most technically difficult part of our proof.

Step 3. We construct a core of the set-valued mapping F :M→ Km(Y)
as intersection of orbits of Lipschitz selections with respect to a certain
family of metric trees with vertices inM.
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6. λ-Balanced Refinements

Let F :M→ Km(Y) be a set-valued mapping, an let λ ≥ 0. Let

BR [F :λ](x) =
⋂
z∈M

[
F(z) + λ ρ(x, z) BY

]
, x ∈ M.

We refer to the set-valued mapping BR [F :λ] :M→ Km(Y) as a

λ-balanced refinement of the mapping F.
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Clearly, BR [F :λ](x) is a convex compact subset of Y, and

BR [F :λ](x) ⊂ F(x)

for all x ∈ M.

Let ~λ = {λ0, λ1, ..., λ`} where 1 ≤ λk ≤ λk+1, k = 1, ..., ` − 1.

We set F[0] = F, and

F[k+1](x) = BR [F[k] :λk](x) =
⋂
z∈M

[
F[k](z) + λk ρ(x, z) BY

]
for every x ∈ M and k ∈ N.
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Conjecture 5.
Let m ∈ N. There exist constants ` = `(m) ∈ N, γ = γ(m) ≥ 1, and a

non-decreasing positive sequence of parameters

~λ = {λ0(m), λ2(m), ..., λ`(m)},

such that the following holds:

Let F :M→ Km(Y) be a set-valued mapping such that for every subset
M′ ⊂ M with #M′ ≤ N(m,Y), the restriction F|M′ of F toM′ has a
Lipschitz selection fM′ :M′ → Y with ‖ fM′‖Lip(M′,Y) ≤ 1.

Then the set-valued mapping

F[`] :M→ Km(Y) is a γ-core of F.

P. Shvartsman (Technion, Haifa, Israel) The core of a set-valued mapping August 5-9, 2019 30 / 112



Recall that F[`] is a γ-core if

dH(F[`](x), F[`](y)) ≤ γ ρ(x, y), x, y ∈ M.

Thus,
F[`](x) ⊂ F[`](y) + γ ρ(x, y)BY , x, y ∈ M.

Let us reformulate this property in terms of γ-balanced refinements.

Given x ∈ M we have:

F[`+1](x) = BR [F[`] :γ](x) =
⋂
y∈M

[
F[`](y) + γ ρ(x, y) BY

]
so that F[`+1](x) ⊃ F[`](x) proving that

F[`+1] = F[`] on M.
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Conjecture 5.1: Stabilization Property of λ-Balanced Refinements

Given m ∈ N there exist ` = `(m) ∈ N and a non-decreasing positive
sequence

~λ = {λ0(m), λ2(m), ..., λ`(m)}

such that for every set-valued mapping F :M→ Km(Y) satisfying the
hypothesis of the Finiteness Principle the following Stabilization Property

F[`+1](x) = F[`](x) , ∅ for all x ∈ M,

holds.
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Theorem 6.

Let (M, ρ) be a pseudometric space.

Conjecture 5 holds with

` = 2 (two iterations), ~λ = {26, 27} and γ = 214

whenever:

(i) m = 1 and Y is an arbitrary Banach space;

(ii) m = 2 and dim Y = 2.
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Conjecture 5: m = 2 and dim Y = 2

A Sketch of the Proof.

The finiteness constant N(2,Y) = 4 provided dim Y = 2.

We know that for every subsetM′ ⊂ M with #M′ ≤ 4, the restriction F|M′
of F toM′ has a Lipschitz selection

fM′ :M′ → Y with ‖ fM′‖Lip(M′,Y) ≤ 1.

Proposition 7. (Sh. [2002])

For every subset
S ⊂ M with #S ≤ 10

the restriction F|S of F to S has a Lipschitz selection fS : S → R2 with the
Lipschitz seminorm

‖ fS ‖Lip(S ,R2) ≤ 26.
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Let B = BY . We introduce a new metric onM:

d(x, y) = 26 ρ(x, y), x, y ∈ M.

Then the following assumption holds:

Assumption 8.
For every subset S ⊂ M with #S ≤ 10 the restriction F|S has a Lipschitz

(with respect to d) selection fS : S → R2 with the Lipschitz seminorm

‖ fS ‖Lip((S ,d),R2) ≤ 1.

We proceed two balanced refinements of F (with respect to the metric d)
with the parameters ~λ = {1, 2}:

F[1](x) =
⋂
z∈M

[F(z) + d(x, z) B] , x ∈ M,

and

G(x) = F[2](x) = BR [F[1] :2] =
⋂
z∈M

[
F[1](z) + 2 d(x, z) B

]
, x ∈ M.
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Thus,

G(x) =
⋂
z∈M


 ⋂

z′∈M

[
F(z′) + d(z, z′) B

] + 2 d(x, z) B

 , x ∈ M.

Clearly,
G(x) ⊂ F(x), x ∈ M.

We prove that the set-valued mapping

G :M→ K2(Y) is a γ − core of F

(with respect to d) with γ = 162 = 2 · 92.

Thus, our aim is prove that

(i) G(x) , ∅ for every x ∈ M;

(ii) dH(G(x),G(y)) ≤ γ d(x, y) for all x, y ∈ M.
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The proof of part (i) relies on the following corollary of Helly’s Theorem:

Lemma 9.
Let K be a collection of convex compact subsets of R2.

Suppose that ⋂
K∈K

K , ∅ .

Then for every r ≥ 0 the following equality ⋂
K∈K

K

 + B(0, r) =
⋂

K,K′∈K

{ [
K

⋂
K′

]
+ B(0, r)

}
holds.
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We recall that

G(x) =
⋂
z∈M


 ⋂

z′∈M

[
F(z′) + d(z, z′) B

] + 2 d(x, z) B

 , x ∈ M.

This and Lemma 9 imply the following representation of the set G(x):

Lemma 10.
For every x ∈ M

G(x) =
⋂

z,z1,z2∈M

{(
[F(z1)+d(z1, z)B]

⋂
[F(z2)+d(z2, z)B]

)
+2d(z, x)B

}
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Given x, z, z1, z2 ∈ M, let

H(z1, z2, z : x) =
{
[F(z1) + d(z1, z)B]

⋂
[F(z2) + d(z2, z)B]

}
+ 2 d(z, x)B.

a ∈ H(z1, z2, z : x)⇐⇒ ∃ g(z1) ∈ F(z1), g(z2) ∈ F(z2), g(z) ∈ R2, g(x) = a,

‖g(z) − g(z1)‖ ≤ d(z, z1), ‖g(z) − g(z2)‖ ≤ d(z, z2), ‖g(x) − g(z)‖ ≤ 2 d(z, x).
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Thus,
G(x) =

⋂
z,z1,z2∈M

H(z1, z2, z : x)

This representation, Helly’s Theorem in R2 and Assumption 8 readily
imply the required property (i):

G(x) , ∅, x ∈ M.

Prove property (ii) which is equivalent to the following imbeddings:

G(x) + γ d(x, y)B ⊃ G(y) x, y ∈ M,

and
G(y) + γ d(x, y)B ⊃ G(x), x, y ∈ M.

Given x, y ∈ M let us prove that

G(x) + γ d(x, y)B ⊃ G(y)
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Lemma 9 and 10 tell us:

G(x) + γ d(x, y)B =

 ⋂
z,z1,z2∈M

H(z1, z2, z : x)

 + γ d(x, y)B =

⋂
A⊂M

{ [
H(u1, u2, u : x)

⋂
H(v1, v2, v : x)

]
+ γ d(x, y) B

}
where A = {u, u1, u2, v, v1, v2, x} runs over all subsets ofM with #A ≤ 7.

Fix A = {u, u1, u2, v, v1, v2, x} ⊂ M. Let

S =
[
H(u1, u2, u : x)

⋂
H(v1, v2, v : x)

]
+ γ d(x, y) B.

Prove that
S ⊃ G(y) =

⋂
z,z1,z2∈M

H(z1, z2, z : y).
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We recall the structure of the set H(z1, z2, z : y):
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The proof relies on the following two auxiliary results.

Proposition 11.

Let C ⊂ Y be a convex set. Let a ∈ Y and let r > 0. Suppose

C ∩ B(a, r) , ∅.

Then for every s > 0

C ∩ B(a, 2r) + 9s B ⊃ (C + sB) ∩ (B(a, 2r) + sB).

The next pictures illustrate the geometrical background of this imbedding.
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Proposition 11 and Helly’s Theorem in R2 imply the following result.

Proposition 12.

Let C,C1,C2 ⊂ R
2 be convex subsets, and let r > 0. Let us assume that

C1 ∩C2 ∩ (C + rB) , ∅.

Then for every δ > 0

{ (C1 ∩C2) + 2rB } ∩C + 18δB ⊃

[(C1 ∩C2) + 2(r + δ)B] ∩ [((C1 + rB) ∩C) + 2δB] ∩ [((C2 + rB) ∩C) + 2δB]
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A Sketch of the Proof.
Let

a ∈

[C1 ∩C2 + 2(r + δ)B] ∩ [(C1 + rB) ∩C + 2δB] ∩ [(C2 + rB) ∩C + 2δB].

Using Helly’s Theorem and the hypothesis of the proposition we prove
that there exists a point x ∈ R2 such that

x ∈ C1 ∩C2 ∩ (C + rB) ∩ B(a, 2r + 2δ) .

Hence, x ∈ C + rB so that

B(x, r) ∩C , ∅ .

Proposition 12 tells us that in this case

C ∩ B(x, 2r) + 18δB ⊃ [C + 2δB] ∩ [B(x, 2r) + 2δB]

= [C + 2δB] ∩ B(x, 2r + 2δ) .
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Recall that

a ∈ [C1 ∩C2 + 2(r + δ)B] ∩ [(C1 + rB) ∩C + 2δB] ∩ [(C2 + rB) ∩C + 2δB],

x ∈ C1 ∩C2 ∩ (C + rB) ∩ B(a, 2r + 2δ) .

Then x ∈ B(a, 2r + 2δ) so that a ∈ B(x, 2r + 2δ).

Furthermore, a ∈ [(C1 + rB) ∩C] + 2δB ⊂ C + 2δB =⇒

(C + 2δB) ∩ B(x, 2r + 2δ) 3 a .

Hence,
C ∩ B(x, 2r) + 18δB ⊃ [C + 2δB] ∩ B(x, 2r + 2δ) 3 a.

But x ∈ C1 ∩C2 which proves the required inclusion

[(C1 ∩C2) + 2rB] ∩C + 18δB 3 a . �
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We return to the proof of the imbedding

S =
[
H(u1, u2, u : x)

⋂
H(v1, v2, v : x)

]
+ γ d(x, y) B ⊃

⋂
z,z1,z2∈M

H(z1, z2, z : y).

We recall that

H(u1, u2, u : x) =
{
[F(u1) + d(u1, z)B]

⋂
[F(u2) + d(u2, z)B]

}
+ 2 d(u, x)B

and

H(v1, v2, v : x) =
{
[F(v1) + d(v1, v)B]

⋂
[F(v2) + d(v2, v)B]

}
+ 2 d(v, x)B.
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To apply Proposition 12 to the set S we have to check that

C1 ∩C2 ∩ (C + rB) , ∅ .

We know that the restriction F|B of F to the set

B = {u1, u2, u, v1, v2, v, x, }

has a Lipschitz selection f : B → R2 with ‖ f ‖Lip(B,R2) ≤ 1.

Then,

C1 ∩C2 ∩ (C + rB) 3 f (u)

proving that the hypothesis of Proposition 12 holds.
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By this proposition,

S = (C1 ∩C2 + 2rB) ∩C + 18δ B ⊃

[(C1 ∩C2) + 2(r + δ)B] ∩ [((C1 + rB) ∩C) + 2δB] ∩ [((C2 + rB) ∩C) + 2δB]

= A1 ∩ A2 ∩ A3 .

Prove that
A1 = (C1 ∩C2) + 2(r + δ)B ⊃ G(y),

A2 = ((C1 + rB) ∩C) + 2δB ⊃ G(y),

and
A3 = ((C2 + rB) ∩C) + 2δB ⊃ G(y).
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Prove that

A1 = (C1 ∩C2) + 2(r + δ)B ⊃ H(u1, u2, u : y).

Recall that
A1 = (C1 ∩C2) + 2(r + δ)B =

{F(u1) + d(u1, u)B} ∩ {F(u2) + d(u2, u)B} + 2(d(u, x) + 9 d(x, y))B .

By the triangle inequality,

d(u, x) + 9 d(x, y) ≥ d(u, x) + d(x, y) ≥ d(u, y)

so that

A1 = (C1 ∩C2) + 2(r + δ)B ⊃

{F(u1) + d(u1, u)B} ∩ {F(u2) + d(u2, u)B} + 2 d(u, y)B

= H(u1, u2, u : y) ⊃ G(y) .
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Prove that

A2 = ((C1 + rB) ∩C) + 2δB ⊃ G(y).
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Applying Proposition 12 we obtain the required inclusion

A2 ⊃ H(v1, v2, v : y) ∩ H(u1, v1, x : y) ∩ H(u1, v2, x : y) ⊃ G(y).

In the same fashion we show that

A3 = [((C2 + rB) ∩C) + 2δB] ⊃ G(y)

proving the required imbedding

G(x) + γ d(x, y)B ⊃ G(y)

with γ = 2 · 92 = 162.
By interchanging the roles of x and y we obtain also

G(y) + γ d(x, y)B ⊃ G(x).

Hence,

dH(G(x),G(y)) ≤ γ d(x, y) = 26 γρ(x, y), x, y ∈ M,

proving that the set-valued mapping G is a 26 γ-core of F. �
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7. Lipschitz Selection in R2: an Algorithm.

The proof of Theorem 6 provides an efficient algorithm for constructing of
an almost optimal Lipschitz selection for any set-valued mapping
F :M→ K2(R2) satisfying the hypothesis of the Finiteness Principle.

• Y = `2
∞ = (R2, ‖ · ‖), where ‖x‖ = max{|x1|, |x2|} for x = (x1, x2) ∈ R2;

• Q0 = [−1, 1] × [−1, 1];

• “box” or “rectangle” - a rectangle in R2 with sides parallel to the
coordinate axes;

• R(R2) - the family of all “boxes” in R2.

• Given G ⊂ R2 we let H[G] denote the smallest box containing G:

H[G] =
⋂ {

Π = [a, b] × [c, d] ⊂ R2 : Π ⊃ G
}

P. Shvartsman (Technion, Haifa, Israel) The core of a set-valued mapping August 5-9, 2019 85 / 112



Let (M, ρ) be a pseudometric space, and let F :M→ K2(R2) be a
set-valued mapping satisfying the following condition:

There exists a constant α > 0 such that for every subsetM′ ⊂ M with
#M′ ≤ 4 the restriction F|M′ has a Lipschitz selection fM′ :M′ → R2 with
the Lipschitz seminorm

‖ fS ‖Lip(M′,R2) ≤ α.

STEP 1. We construct a 26α-balanced refinement of F:

F[1](x) =
⋂
y∈M

[
F(y) + 26α ρ(x, y) Q0

]
, x ∈ M.

STEP 2. We construct a 27α-balanced refinement of F[1]:

F[2](x) =
⋂
y∈M

[
F[1](y) + 27α ρ(x, y) Q0

]
, x ∈ M.
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STEP 3. We construct a set-valued mapping HF :M→ R(R2) which to
every x ∈ M assigns the smallest box containing F[2](x):

HF(x) = H
[
F[2](x)

]
, x ∈ M.

STEP 4. We define a Lipschitz selection f :M→ R2 of F by

f (x) = center (HF(x)) = center
(
H

[
F[2](x)

] )
, x ∈ M.

Here given a rectangle P ∈ R(R2) we let center (P) denote the center of P.
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The following statement justifies STEP 3 and STEP 4 of the Algorithm.

Statement 14.
(1) Let G ⊂ R2 be a convex compact set. Then center (H(G)) ∈ G.

(2) Let G1,G2 ⊂ R
2 be convex compact sets. Then

dH(H[G1],H[G2]) ≤ dH(G1,G2).

(3) For every two boxes P1, P2 ∈ R(R2) we have

‖ center (P1) − center (P2)‖ ≤ dH(P1, P2).

(Recall that R2 is equipped with the `2
∞-norm.)

We know that the set-valued mapping F[2] :M→ K2 is a γ-core of F
with γ = 214α, i.e.,

dH(F[2](x), F[2](y)) ≤ γ ρ(x, y), x, y ∈ M.

Combining this inequality with Statement 14 we conclude that f is a
Lipschitz selection of F with ‖ f ‖Lip(M,R2) ≤ γ.
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8. Criterions for Lipschitz Selections in R2

Let Y = `2
∞, and let F :M→ K(R2) be a set valued mapping.

Given λ > 0 and x, x′ ∈ M, let

Rλ[x, x′ : F] = H[F(x) ∩ {F(x′) + λ ρ(x, x′) Q0}].
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8. Criterions for Lipschitz Selections in R2

Theorem 15 (Sh. [2002])

A set-valued mapping F :M→ K(R2) has a Lipschitz selection if and
only if ∃ λ > 0 such that:

(i) Rλ[x, x′ : F] , ∅ for every x, x′ ∈ M;

(ii) For every x, x′, y, y′ ∈ M the following inequality

dist
(
Rλ[x, x′ : F],Rλ[y, y′ : F]

)
≤ λ ρ(x, y)

holds.

Furthermore,

inf{‖ f ‖Lip(M,R2) : f is a selection of F onM} ∼ inf λ
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This criterion follows from a proof of the Finiteness Principle for Lipschitz
selections for Y = R2 given below.

Given a set-valued mapping F :M→ K2(R2), we assume that the
restriction F|M′ of F to everyM′ ⊂ M with #M ≤ 4 has a Lipschitz
selection fM′ :M′ → R2 with ‖ fM′‖Lip(M′,R2) ≤ 1.

Prove that F has a Lipschitz selection f :M→ R2 with ‖ f ‖Lip(M,R2) ≤ 8.

A Sketch of the Proof.

STEP 1. We construct the 1-balanced refinement of the mapping F:

F[1](x) =
⋂
y∈M

[
F(y) + ρ(x, y) B

]
, x ∈ M.

STEP 2. We define a set-valued mapping TF :M→ R(R2) which to
every x ∈ M assigns the smallest box containing F[1](x):

TF(x) = H
[
F[1](x)

]
, x ∈ M.
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STEP 3. We prove that our assumption (i.e., the existence of a Lipschitz
selection on every 4-point subset ofM with Lipschitz constant ≤ 1) implies
the following:

The restriction TF |M′ of the set-valued mapping TF to every two point
subsetM′ ⊂ M has a Lipschitz selection gM′ :M′ → R2 with
‖gM′‖Lip(M′,R2) ≤ 1 ⇐⇒

dist(TF(x),TF(y)) ≤ ρ(x, y) for every x, y ∈ M.

Hence we conclude that there exists a

Lipschitz selection g :M→ R2 of the mapping TF :M→ R(R2)

with ‖g‖Lip(M,R2) ≤ 1.
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STEP 4. Given a convex closed set G ⊂ R2 we let Pr(· : G) denote
the metric projection operator (in `2

∞) onto G.

Finally, we define the required Lipschitz selection f :M→ R2 by letting

f (x) = Pr
(
g(x) : F[1](x)

)
, x ∈ M .

We prove that f is well defined onM. We also show that

‖ f (x) − f (y)‖ ≤ 8 ρ(x, y)

for every x, y ∈ M completing the proof of the theorem. �
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9. An Algorithm for Lipschitz Selections in R2

Let (M, ρ) be a pseudometric space, and let F :M→ K2(R2) be a
set-valued mapping satisfying the following condition:

There exists a constant α > 0 such that for every subsetM′ ⊂ M with
#M′ ≤ 4 the restriction F|M′ has a Lipschitz selection fM′ :M′ → R2 with
the Lipschitz seminorm

‖ fS ‖Lip(M′,R2) ≤ α.

STEP 1. We construct an α-balanced refinement of F:

F[1](x) =
⋂
y∈M

[
F(y) + α ρ(x, y) Q0

]
, x ∈ M.
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STEP 2. We construct a set-valued mapping TF :M→ R(R2) which to
every x ∈ M assigns the smallest box containing F[1](x):

TF(x) = H
[
F[1](x)

]
, x ∈ M.

STEP 3. We construct an α-balanced refinement of TF :

T
[1]
F (x) =

⋂
y∈M

[
TF(y) + α ρ(x, y) Q0

]
, x ∈ M.

STEP 4. We construct a mapping g :M→ R2 defined by

g(x) = center
(
T

[1]
F (x)

)
, x ∈ M.

STEP 5. We define a Lipschitz selection f :M→ R2 of F by

f (x) = Pr
(
g(x) : F[1](x)

)
, x ∈ M.
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Thank you!
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