The Core of a Set-Valued Mapping and the Finiteness Principle for Lipschitz Selections

Pavel Shvartsman

Technion - Israel Institute of Technology, Haifa, Israel

The Twelfth Whitney Problems Workshop The University of Texas at Austin, TX August 5-9, 2019

P. Shvartsman (Technion, Haifa, Israel)

The core of a set-valued mapping

1. Lipschitz Selection Problem: Main Settings

• (\mathcal{M}, ρ) - a pseudometric space.

Thus, $\rho : \mathcal{M} \times \mathcal{M} \to \mathbb{R}_+$ is symmetric and satisfies the triangle inequality, but $\rho(x, y)$ may admit the value 0 for $x \neq y$.

- $(Y, \|\cdot\|)$ a Banach space.
- $B_Y(a, r)$ a ball of radius r > 0 centered at a point $a \in Y$; $B_Y = B_Y(0, 1)$.
- Lip(\mathcal{M} ; *Y*) the space of Lipschitz continuous mappings $f : \mathcal{M} \to Y$, with the seminorm

 $||f||_{\operatorname{Lip}(\mathcal{M};Y)} := \inf\{\lambda > 0 : ||f(x) - f(y)|| \le \lambda \rho(x,y), \ x, y \in \mathcal{M}\}$

Lipschitz Selection Problem: Main Settings

• $\mathcal{K}_m(Y)$ - the family of all nonempty convex compact subsets of *Y* of dimension at most *m*.

• $F : \mathcal{M} \to \mathcal{K}_m(Y)$ - a set-valued mapping from \mathcal{M} into $\mathcal{K}_m(Y)$.

• A (single valued) mapping $f : \mathcal{M} \to Y$ is called a *selection of* F if

 $f(x) \in F(x)$ for all $x \in \mathcal{M}$

• A selection f is said to be *Lipschitz* if $f \in Lip(\mathcal{M}; Y)$.

Lipschitz Selection Problem: Main Settings

• Given $A, B \subset Y$ we let A + B denote the Minkowski sum of A and B

 $A + B = \{a + b : a \in A, b \in B\}$

• Let *A*, *A*′ ⊂ *Y*. We let d_H(*A*, *A*′) denote the Hausdorff distance between these sets:

 $d_{H}(A, A') = \inf\{r > 0 : A + B_{Y}(0, r) \supset A', A' + B_{Y}(0, r) \supset A\}.$

Lipschitz Selection Problem

Let (\mathcal{M}, ρ) be a pseudometric space and let $F : \mathcal{M} \to \mathcal{K}_m(Y)$ be a set-valued mapping.

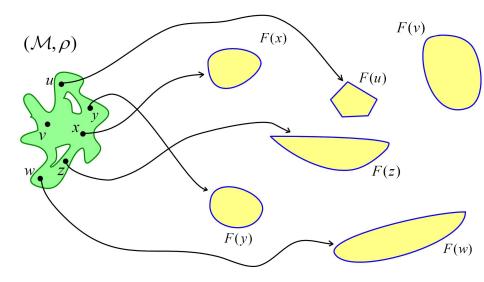
1. How can we decide

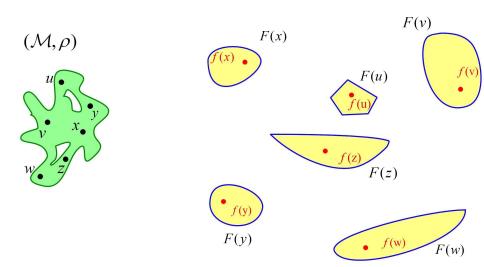
whether there exists a Lipschitz selection of F,

i.e., a mapping $f \in \text{Lip}(\mathcal{M}; Y)$ such that $f(x) \in F(x)$ for all $x \in \mathcal{M}$?

2. Consider the Lipschitz norms of all Lipschitz selections of *F*. How small can these norms be?

This is a purely geometrical problem about a suitable choice of points in a family convex compact sets in Y indexed by points of the metric space M.







2. The Finiteness Principle for Lipschitz Selections

Let

 $N(m,Y) = 2^{\min\{m+1,\dim Y\}}$

Theorem 1. (Fefferman, Shvartsman [2018], GAFA)

Let (\mathcal{M}, ρ) be a pseudometric space and let $F : \mathcal{M} \to \mathcal{K}_m(Y)$.

Assume that for every subset $\mathcal{M}' \subset \mathcal{M}$ with $\#\mathcal{M}' \leq N(m, Y)$, the restriction $F|_{\mathcal{M}'}$ of *F* to \mathcal{M}' has a Lipschitz selection

 $f_{\mathcal{M}'}: \mathcal{M}' \to Y \quad \text{with} \quad ||f_{\mathcal{M}'}||_{\operatorname{Lip}(\mathcal{M}',Y)} \leq 1.$

Then F has a Lipschitz selection

 $f: \mathcal{M} \to Y$ with $||f||_{\operatorname{Lip}(\mathcal{M},Y)} \leq \gamma(m)$.

P. Shvartsman (Technion, Haifa, Israel)

Helly's Theorem

Let $\rho \equiv 0$ on \mathcal{M} . In this case the Finiteness Principle holds with $n(m, Y) = \min\{m + 2, \dim Y + 1\}.$

Indeed, $f \in \text{Lip}((\mathcal{M}, \rho), Y) \iff f(x) = f(y), x, y \in \mathcal{M} \Longrightarrow f(x) = c \text{ on } \mathcal{M}.$

Therefore, *F* has a selection $\iff \exists c \in F(x)$ for all $x \in \mathcal{M} \iff$ The family {*F*(*x*) : *x* $\in \mathcal{M}$ } has a common point

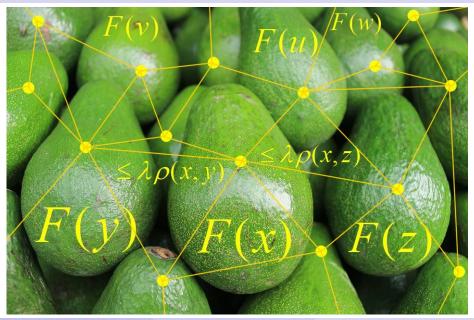
Helly's Intersection Theorem

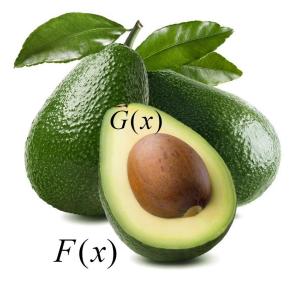
Let \mathcal{K} be a family of convex compact subsets of Y of dimension at most m.

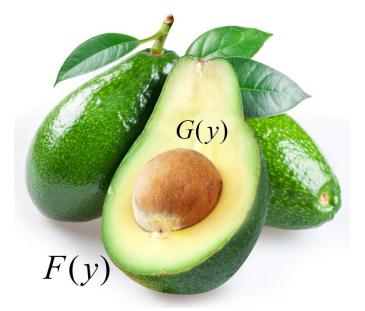
Suppose that for every subfamily \mathcal{K}' of \mathcal{K} consisting of at most n(m, Y) elements

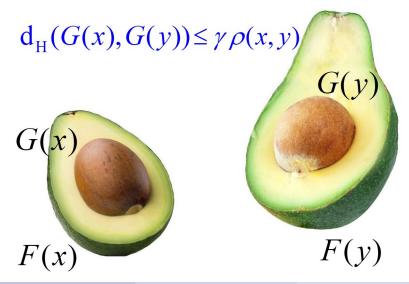
 $\bigcap_{K\in\mathcal{K}'}K\neq\emptyset.$

Then there exists a point common to all of the family \mathcal{K} .









The Core of a Set-valued Mapping: Definition

Let (\mathcal{M}, ρ) be a metric space and let $F : \mathcal{M} \to \mathcal{K}_m(Y)$ be a set-valued mapping. Let $\gamma > 0$.

Definition 2.

A set-valued mapping $G : \mathcal{M} \to \mathcal{K}_m(Y)$ is said to be a $\underline{\gamma\text{-core}}$ of the set-valued mapping F if:

- (i) $G(x) \subset F(x)$ for all $x \in \mathcal{M}$.
- (ii) For every $x, y \in \mathcal{M}$

 $\mathsf{d}_{\mathsf{H}}(G(x),G(y)) \leq \gamma \rho(x,y)$

In particular, any Lipschitz selection of *F* with Lipschitz constant γ is a 0-dimensional γ -core of *F*.

P. Shvartsman (Technion, Haifa, Israel)

Claim 3.

Let $G : \mathcal{M} \to \mathcal{K}_m(Y)$ be a γ -core of a set-valued mapping $F : \mathcal{M} \to \mathcal{K}_m(Y)$.

Then *F* has a Lipschitz selection $f : \mathcal{M} \to Y$ with

 $\|f\|_{\operatorname{Lip}(\mathcal{M},Y)} \leq C \gamma$

where C = C(m) is a constant depending only on *m*.

The proof is immediate from the following result.

4. Steiner-type selectors

Let $\mathcal{K}(Y) = \bigcup \{\mathcal{K}_m(Y) : m \in \mathbb{N}\}$ be the family of all non-empty finite dimensional convex compact subsets of *Y*.

Theorem 4. (Sh. [2004])

There exists a mapping $S_Y : \mathcal{K}(Y) \to Y$ such that

```
(i). S_Y(K) \in K for each K \in \mathcal{K}(Y);
```

```
(ii). For every K_1, K_2 \in \mathcal{K}(Y),
```

 $||S_Y(K_1) - S_Y(K_2)|| \le \gamma \, \mathrm{d}_{\mathrm{H}}(K_1, K_2),$

Here $\gamma = \gamma(\dim K_1, \dim K_2)$.

We refer to $S_Y(K)$ as a *Steiner-type point* of a convex set $K \in \mathcal{K}(Y)$. We call $S_Y : \mathcal{K}(Y) \to Y$ a *Steiner-type selector*.

Proof of Claim 3.

We define the required Lipschitz selection $f : \mathcal{M} \to Y$ of the set valued mapping $F : \mathcal{M} \to \mathcal{K}_m(Y)$ as a composition of the γ -core $G : \mathcal{M} \to \mathcal{K}_m(Y)$ and the Steiner-type selector $S_Y : \mathcal{K}(Y) \to Y$:

 $f(x) = S_Y(G(x)), \quad x \in \mathcal{M}.$

Then,

 $f(x) = S_Y(G(x)) \in G(x) \subset F(x)$

i.e., f is a <u>selection</u> of F. Furthermore,

 $\begin{aligned} \|f(x) - f(y)\| &= \|S_Y(G(x)) - S_Y(G(y))\| \\ &\leq C(\dim G(x), \dim G(y)) \, d_H(G(x), G(y)) \\ &\leq C(m) \gamma \rho(x, y). \end{aligned}$

This proves that *f* is a *Lipschitz selection* of *F* with $||f||_{\text{Lip}(\mathcal{M},Y)} \leq C(m)\gamma$.

5. Basic Convex Sets

The paper "Sharp Finiteness Principles for Lipschitz Selections", GAFA, 2018 by C. Fefferman and P. Shvartsman:

Given a set-valued mapping $F : \mathcal{M} \to \mathcal{K}_m(Y)$ satisfying the hypothesis of the Finiteness Principle for Lipschitz Selections (Theorem 1) we construct a γ -core with $\gamma = \gamma(m)$. We do this in three steps.

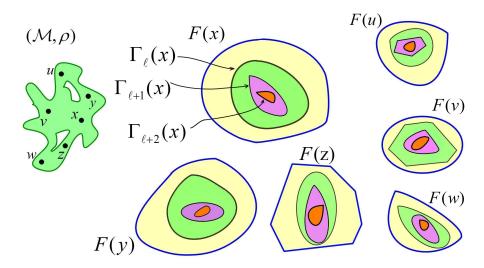
Step 1. We introduce a family $\Gamma_{\ell} : \mathcal{M} \to \mathcal{K}_m(Y), \ \ell = 0, 1, ...,$ of the so-called Basic Convex Sets having the following properties:

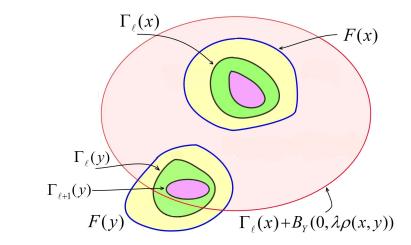
- (i) $\Gamma_{\ell}(x) \neq \emptyset$ and $\Gamma_{\ell}(x) \subset F(x)$ for every $x \in \mathcal{M}, \ell = 0, 1, ...;$
- (ii) For all $x, y \in \mathcal{M}$ and $\ell = 0, 1, ...,$

 $\Gamma_{\ell+1}(x) \subset \Gamma_\ell(y) + B_Y(0,\lambda\rho(x,y))$

with some $\lambda = \lambda(m)$.

In particular, $\Gamma_{\ell+1}(x) \subset \Gamma_{\ell}(x)$, for all $\ell = 0, 1, ...$





Apparently, in general, the family of mappings

 $\Gamma_{\ell}: \mathcal{M} \to \mathcal{K}_m(Y), \quad \ell = 0, 1, ...,$

is not a core of the set-valued mapping *F* (for any $\ell = 0, 1, ...$)

P. Shvartsman (Technion, Haifa, Israel)

Step 2. We prove that the Finiteness Principle for Lipschitz selections holds for any finite metric tree.

The proof relies on ideas developed in the paper

```
C. Fefferman, A. Israel, K. Luli
```

"Finiteness Principles for Smooth Selection", GAFA, 2016.

```
for the case \mathcal{M} = \mathbb{R}^n.
```

Step 2 is the most technically difficult part of our proof.

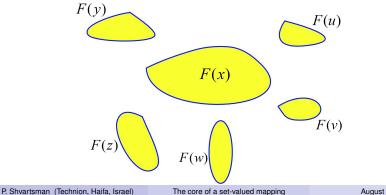
Step 3. We construct a core of the set-valued mapping $F : \mathcal{M} \to \mathcal{K}_m(Y)$ as intersection of orbits of Lipschitz selections with respect to a certain family of metric trees with vertices in \mathcal{M} .

6. λ -Balanced Refinements

Let $F : \mathcal{M} \to \mathcal{K}_m(Y)$ be a set-valued mapping, an let $\lambda \ge 0$. Let $\mathcal{BR}[F:\lambda](x) = \bigcap_{z \in \mathcal{M}} [F(z) + \lambda \rho(x, z) B_Y], \quad x \in \mathcal{M}.$

We refer to the set-valued mapping $\mathcal{BR}[F:\lambda]: \mathcal{M} \to \mathcal{K}_m(Y)$ as a

 λ -balanced refinement of the mapping *F*.

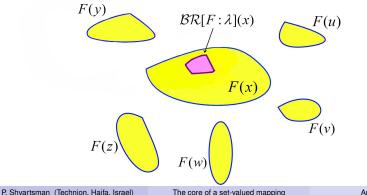


6. λ -Balanced Refinements

Let $F : \mathcal{M} \to Y$ be a set-valued mapping, an let $\lambda \ge 0$. Let $\mathcal{BR}[F:\lambda](x) = \bigcap_{z \in \mathcal{M}} [F(z) + \lambda \rho(x, z) B_Y], \quad x \in \mathcal{M}.$

We refer to the set-valued mapping $\mathcal{BR}[F:\lambda]: \mathcal{M} \to \mathcal{K}_m(Y)$ as a

 λ -balanced refinement of the mapping *F*.



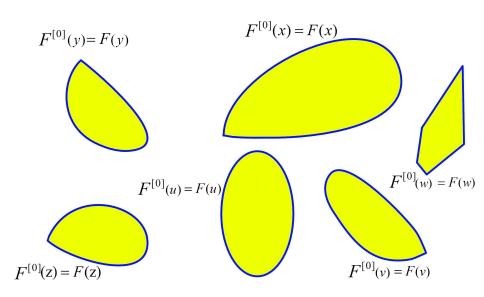
Clearly, $\mathcal{BR}[F:\lambda](x)$ is a convex compact subset of Y, and

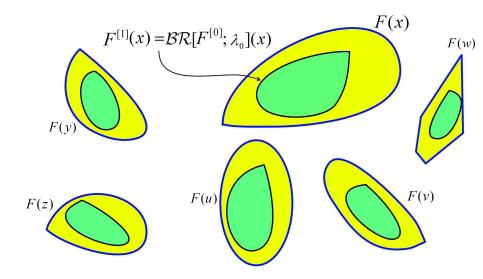
 $\mathcal{BR}[F:\lambda](x) \subset F(x)$

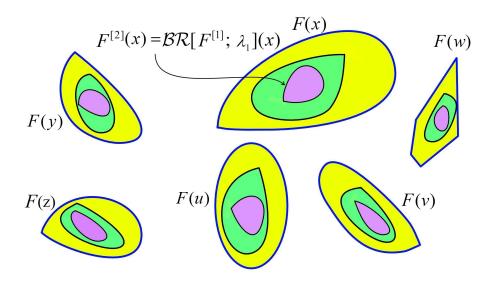
for all $x \in \mathcal{M}$.

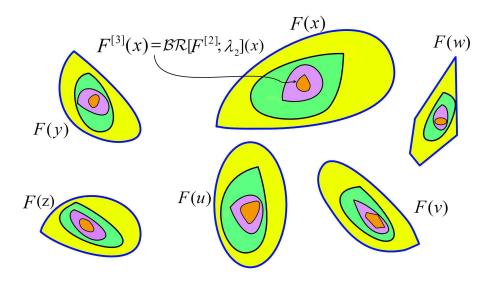
Let $\vec{\lambda} = \{\lambda_0, \lambda_1, ..., \lambda_\ell\}$ where $1 \le \lambda_k \le \lambda_{k+1}, k = 1, ..., \ell - 1$. We set $F^{[0]} = F$, and $F^{[k+1]}(x) = \mathcal{BR}[F^{[k]}:\lambda_k](x) = \bigcap_{z \in \mathcal{M}} \left[F^{[k]}(z) + \lambda_k \rho(x, z) B_Y\right]$

for every $x \in \mathcal{M}$ and $k \in \mathbb{N}$.









Conjecture 5.

Let $m \in \mathbb{N}$. There exist constants $\ell = \ell(m) \in \mathbb{N}$, $\gamma = \gamma(m) \ge 1$, and a non-decreasing positive sequence of parameters

 $\vec{\lambda} = \{\lambda_0(m), \lambda_2(m), ..., \lambda_\ell(m)\},\$

such that the following holds:

Let $F : \mathcal{M} \to \mathcal{K}_m(Y)$ be a set-valued mapping such that for every subset $\mathcal{M}' \subset \mathcal{M}$ with $\#\mathcal{M}' \leq N(m, Y)$, the restriction $F|_{\mathcal{M}'}$ of F to \mathcal{M}' has a Lipschitz selection $f_{\mathcal{M}'} : \mathcal{M}' \to Y$ with $\|f_{\mathcal{M}'}\|_{\operatorname{Lip}(\mathcal{M}',Y)} \leq 1$.

Then the set-valued mapping

 $F^{[\ell]}: \mathcal{M} \to \mathcal{K}_m(Y)$ is a γ -core of F.

Recall that $F^{[\ell]}$ is a γ -core if

$$d_{\mathrm{H}}(F^{[\ell]}(x), F^{[\ell]}(y)) \le \gamma \rho(x, y), \quad x, y \in \mathcal{M}.$$

Thus,

$$F^{[\ell]}(x) \subset F^{[\ell]}(y) + \gamma \rho(x, y)B_Y, \quad x, y \in \mathcal{M}.$$

Let us reformulate this property in terms of γ -balanced refinements. Given $x \in \mathcal{M}$ we have:

$$F^{[\ell+1]}(x) = \mathcal{BR}[F^{[\ell]};\gamma](x) = \bigcap_{y \in \mathcal{M}} \left[F^{[\ell]}(y) + \gamma \rho(x,y) B_Y \right]$$

so that $F^{[\ell+1]}(x) \supset F^{[\ell]}(x)$ proving that

$$F^{[\ell+1]} = F^{[\ell]} \quad \text{on} \quad \mathcal{M}.$$

Conjecture 5.1: Stabilization Property of λ -Balanced Refinements

Given $m \in \mathbb{N}$ there exist $\ell = \ell(m) \in \mathbb{N}$ and a non-decreasing positive sequence

 $\vec{\lambda} = \{\lambda_0(m), \lambda_2(m), ..., \lambda_\ell(m)\}$

such that for every set-valued mapping $F : \mathcal{M} \to \mathcal{K}_m(Y)$ satisfying the hypothesis of the Finiteness Principle the following Stabilization Property

 $F^{[\ell+1]}(x) = F^{[\ell]}(x) \neq \emptyset$ for all $x \in \mathcal{M}$,

holds.

P. Shvartsman (Technion, Haifa, Israel)

Theorem 6.

Let (\mathcal{M}, ρ) be a pseudometric space.

Conjecture 5 holds with

$$\ell = 2$$
 (two iterations), $\vec{\lambda} = \{2^6, 2^7\}$ and $\gamma = 2^{12}$

whenever:

(i) *m* = 1 and *Y* is an arbitrary Banach space;
(ii) *m* = 2 and dim *Y* = 2.

Conjecture 5: m = 2 and dim Y = 2

A Sketch of the Proof.

The finiteness constant N(2, Y) = 4 provided dim Y = 2.

We know that for every subset $\mathcal{M}' \subset \mathcal{M}$ with $\#\mathcal{M}' \leq 4$, the restriction $F|_{\mathcal{M}'}$ of *F* to \mathcal{M}' has a Lipschitz selection

 $f_{\mathcal{M}'}: \mathcal{M}' \to Y \quad \text{with} \quad ||f_{\mathcal{M}'}||_{\operatorname{Lip}(\mathcal{M}',Y)} \leq 1.$

Proposition 7. (Sh. [2002])

For every subset

 $S \subset \mathcal{M}$ with $\#S \leq 10$

the restriction $F|_S$ of F to S has a Lipschitz selection $f_S : S \to \mathbb{R}^2$ with the Lipschitz seminorm

 $\|f_S\|_{\operatorname{Lip}(S,\mathbb{R}^2)} \le 2^6.$

P. Shvartsman (Technion, Haifa, Israel)

Let $B = B_Y$. We introduce a new metric on \mathcal{M} :

$$d(x, y) = 2^6 \rho(x, y), \quad x, y \in \mathcal{M}.$$

Then the following assumption holds:

Assumption 8.

For every subset $S \subset \mathcal{M}$ with $\#S \leq 10$ the restriction $F|_S$ has a Lipschitz (with respect to d) selection $f_S : S \to \mathbb{R}^2$ with the Lipschitz seminorm

 $\|f_S\|_{\operatorname{Lip}((S,d),\mathbb{R}^2)} \le 1.$

We proceed two balanced refinements of *F* (with respect to the metric d) with the parameters $\vec{\lambda} = \{1, 2\}$:

$$F^{[1]}(x) = \bigcap_{z \in \mathcal{M}} \left[F(z) + d(x, z) B \right], \quad x \in \mathcal{M},$$

and

$$G(x) = F^{[2]}(x) = \mathcal{BR}[F^{[1]}:2] = \bigcap_{z \in \mathcal{M}} \left[F^{[1]}(z) + 2 \operatorname{d}(x, z) B \right], \quad x \in \mathcal{M}.$$

Thus,

$$G(x) = \bigcap_{z \in \mathcal{M}} \left\{ \left(\bigcap_{z' \in \mathcal{M}} \left[F(z') + d(z, z') B \right] \right) + 2 d(x, z) B \right\}, \quad x \in \mathcal{M}.$$

Clearly,

 $G(x) \subset F(x), \quad x \in \mathcal{M}.$

We prove that the set-valued mapping

 $G: \mathcal{M} \to \mathcal{K}_2(Y)$ is a γ – core of F

(with respect to d) with $\gamma = 162 = 2 \cdot 9^2$.

Thus, our aim is prove that

(i) $G(x) \neq \emptyset$ for every $x \in \mathcal{M}$;

(ii) $d_{\mathrm{H}}(G(x), G(y)) \leq \gamma d(x, y)$ for all $x, y \in \mathcal{M}$.

The proof of part (i) relies on the following corollary of Helly's Theorem:

Lemma 9.

Let \mathcal{K} be a collection of convex compact subsets of \mathbb{R}^2 .

Suppose that

$$\bigcap_{X\in\mathcal{K}}K\neq\emptyset.$$

Then for every $r \ge 0$ the following equality

$$\left(\bigcap_{K\in\mathcal{K}}K\right) + B(0,r) = \bigcap_{K,K'\in\mathcal{K}}\left\{\left[K\bigcap K'\right] + B(0,r)\right\}$$

holds.

We recall that

$$G(x) = \bigcap_{z \in \mathcal{M}} \left\{ \left(\bigcap_{z' \in \mathcal{M}} \left[F(z') + d(z, z') B \right] \right) + 2 d(x, z) B \right\}, \quad x \in \mathcal{M}.$$

This and Lemma 9 imply the following representation of the set G(x):

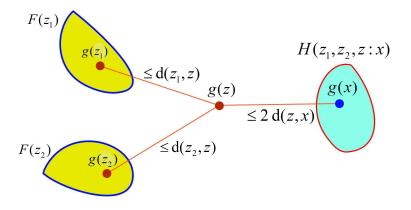
Lemma 10. For every $x \in \mathcal{M}$ $G(x) = \bigcap_{z,z_1,z_2 \in \mathcal{M}} \left\{ \left(\left[F(z_1) + d(z_1, z)B \right] \bigcap \left[F(z_2) + d(z_2, z)B \right] \right) + 2d(z, x)B \right\}$

P. Shvartsman (Technion, Haifa, Israel)

The core of a set-valued mapping

Given $x, z, z_1, z_2 \in \mathcal{M}$, let

 $H(z_1, z_2, z : x) = \left\{ \begin{bmatrix} F(z_1) + d(z_1, z)B \end{bmatrix} \bigcap \begin{bmatrix} F(z_2) + d(z_2, z)B \end{bmatrix} \right\} + 2 d(z, x)B.$ $a \in H(z_1, z_2, z : x) \iff \exists \ g(z_1) \in F(z_1), \ g(z_2) \in F(z_2), \ g(z) \in \mathbb{R}^2, \ g(x) = a,$ $\|g(z) - g(z_1)\| \le d(z, z_1), \quad \|g(z) - g(z_2)\| \le d(z, z_2), \quad \|g(x) - g(z)\| \le 2 d(z, x).$



Thus,

$$G(x) = \bigcap_{z, z_1, z_2 \in \mathcal{M}} H(z_1, z_2, z : x)$$

This representation, Helly's Theorem in \mathbb{R}^2 and Assumption 8 readily imply the required property (i):

```
G(x) \neq \emptyset, \quad x \in \mathcal{M}.
```

Prove property (ii) which is equivalent to the following imbeddings:

```
G(x) + \gamma d(x, y)B \supset G(y) \quad x, y \in \mathcal{M},
```

and

$$G(y) + \gamma d(x, y)B \supset G(x), \quad x, y \in \mathcal{M}.$$

Given $x, y \in \mathcal{M}$ let us prove that

 $G(x) + \gamma d(x, y)B \supset G(y)$

Lemma 9 and 10 tell us:

$$G(x) + \gamma \operatorname{d}(x, y)B = \left[\bigcap_{z, z_1, z_2 \in \mathcal{M}} H(z_1, z_2, z : x)\right] + \gamma \operatorname{d}(x, y)B =$$

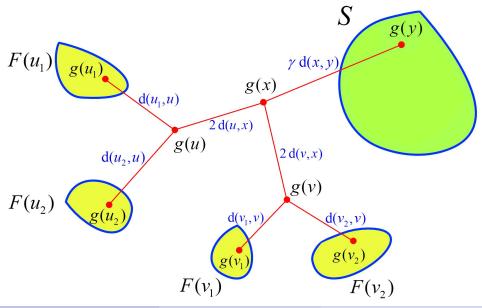
$$\bigcap_{\mathcal{A}\subset\mathcal{M}}\left\{\left[H(u_1,u_2,u:x)\bigcap H(v_1,v_2,v:x)\right]+\gamma \,\mathrm{d}(x,y)\,B\right\}$$

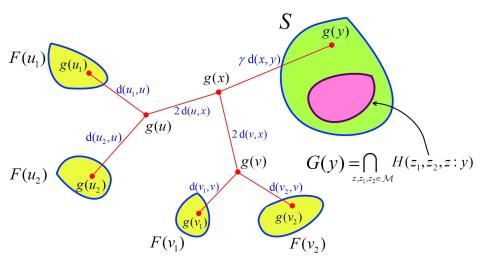
where $\mathcal{A} = \{u, u_1, u_2, v, v_1, v_2, x\}$ runs over all subsets of \mathcal{M} with $\#\mathcal{A} \leq 7$.

Fix
$$\mathcal{A} = \{u, u_1, u_2, v, v_1, v_2, x\} \subset \mathcal{M}$$
. Let
 $S = [H(u_1, u_2, u : x) \bigcap H(v_1, v_2, v : x)] + \gamma d(x, y) B.$

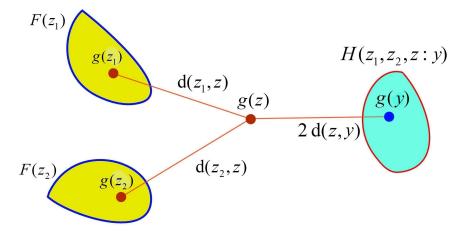
Prove that

$$S \supset G(y) = \bigcap_{z,z_1,z_2 \in \mathcal{M}} H(z_1, z_2, z : y).$$





We recall the structure of the set $H(z_1, z_2, z : y)$:



The proof relies on the following two auxiliary results.

Proposition 11.

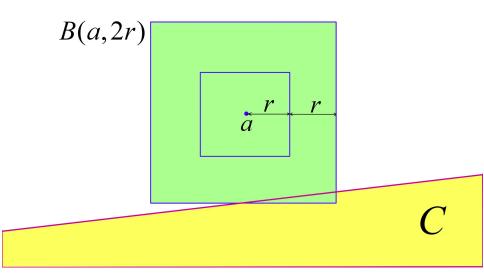
Let $C \subset Y$ be a convex set. Let $a \in Y$ and let r > 0. Suppose

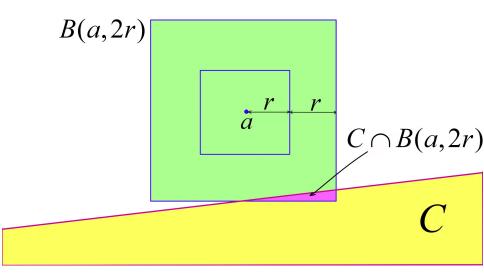
 $C\cap B(a,r)\neq \emptyset.$

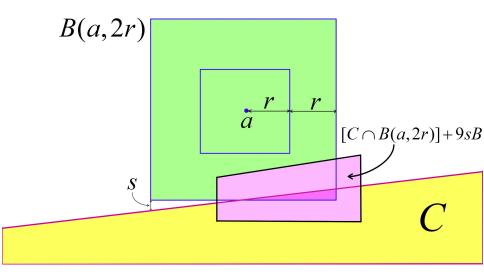
Then for every s > 0

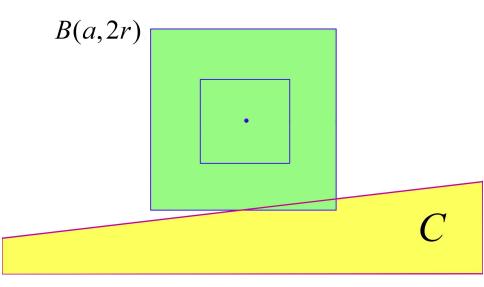
 $C \cap B(a,2r) + 9s B \supset (C + sB) \cap (B(a,2r) + sB).$

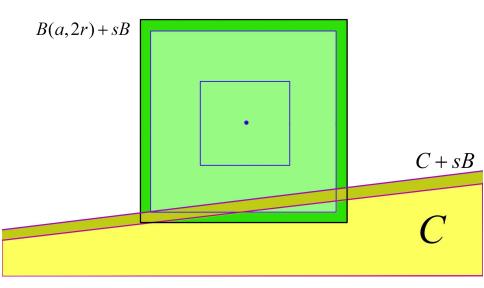
The next pictures illustrate the geometrical background of this imbedding.

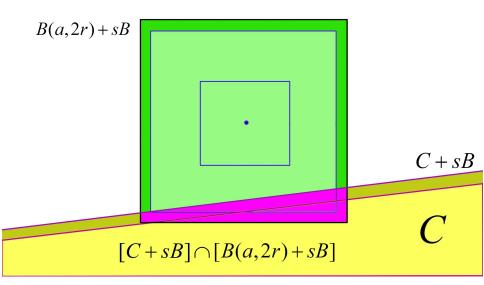




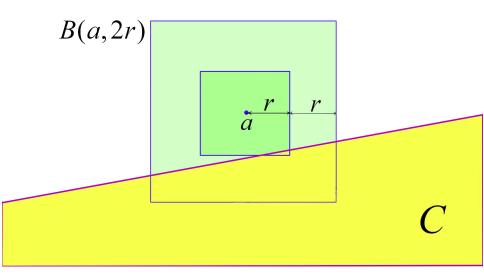


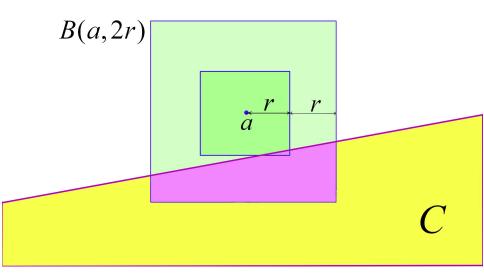


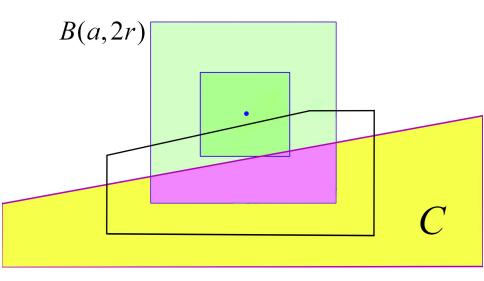


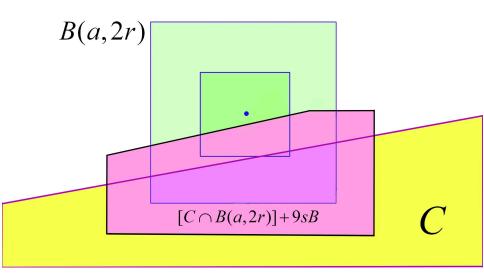


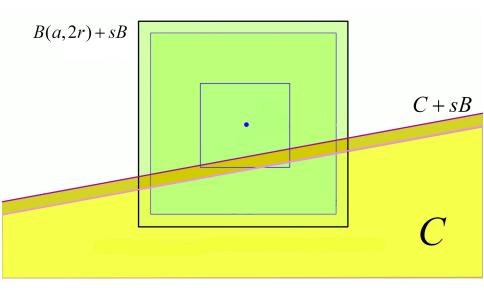
The core of a set-valued mapping

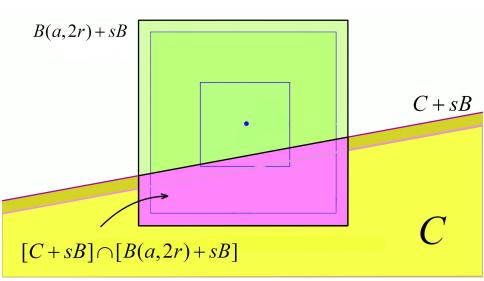


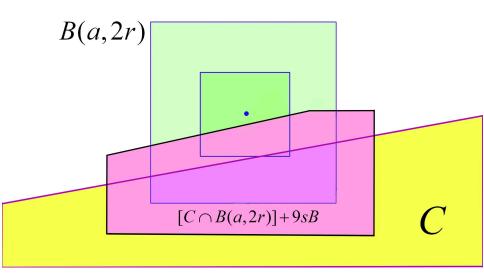












Proposition 11 and Helly's Theorem in \mathbb{R}^2 imply the following result.

Proposition 12.

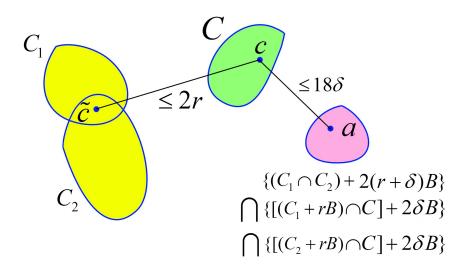
Let $C, C_1, C_2 \subset \mathbb{R}^2$ be convex subsets, and let r > 0. Let us assume that

 $C_1 \cap C_2 \cap (C + rB) \neq \emptyset.$

Then for every $\delta > 0$

 $\{(C_1 \cap C_2) + 2rB\} \cap C + 18\delta B \supset$

 $[(C_1 \cap C_2) + 2(r+\delta)B] \cap [((C_1 + rB) \cap C) + 2\delta B] \cap [((C_2 + rB) \cap C) + 2\delta B]$



A Sketch of the Proof.

Let

$a \in$

$[C_1 \cap C_2 + 2(r+\delta)B] \cap [(C_1 + rB) \cap C + 2\delta B] \cap [(C_2 + rB) \cap C + 2\delta B].$

Using Helly's Theorem and the hypothesis of the proposition we prove that there exists a point $x \in \mathbb{R}^2$ such that

 $x\in C_1\cap C_2\cap (C+rB)\cap B(a,2r+2\delta)\,.$

Hence, $x \in C + rB$ so that

 $B(x,r) \cap C \neq \emptyset$.

Proposition 12 tells us that in this case

 $C \cap B(x, 2r) + 18\delta B \supset [C + 2\delta B] \cap [B(x, 2r) + 2\delta B]$ = [C + 2\delta B] \cap B(x, 2r + 2\delta).

Recall that

 $\begin{aligned} a \in [C_1 \cap C_2 + 2(r+\delta)B] \cap [(C_1 + rB) \cap C + 2\delta B] \cap [(C_2 + rB) \cap C + 2\delta B], \\ x \in C_1 \cap C_2 \cap (C + rB) \cap B(a, 2r + 2\delta). \end{aligned}$

Then $x \in B(a, 2r + 2\delta)$ so that $a \in B(x, 2r + 2\delta)$.

Furthermore, $a \in [(C_1 + rB) \cap C] + 2\delta B \subset C + 2\delta B \implies$

 $(C+2\delta B)\cap B(x,2r+2\delta)\ni a\,.$

Hence,

 $C \cap B(x,2r) + 18\delta B \supset [C+2\delta B] \cap B(x,2r+2\delta) \ni a.$

But $x \in C_1 \cap C_2$ which proves the required inclusion

 $[(C_1 \cap C_2) + 2rB] \cap C + 18\delta B \ni a.$

We return to the proof of the imbedding

$$S = [H(u_1, u_2, u : x) \bigcap H(v_1, v_2, v : x)] + \gamma d(x, y) B \supset \bigcap_{z, z_1, z_2 \in \mathcal{M}} H(z_1, z_2, z : y).$$

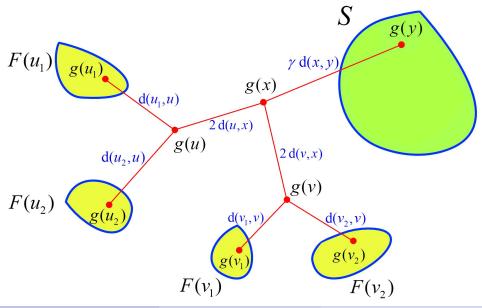
We recall that

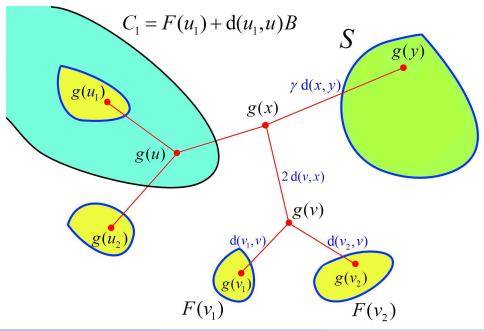
$$H(u_1, u_2, u : x) = \left\{ \left[F(u_1) + d(u_1, z)B \right] \bigcap \left[F(u_2) + d(u_2, z)B \right] \right\} + 2 d(u, x)B$$
 and

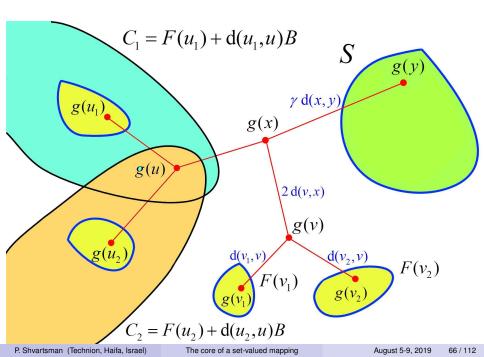
$$H(v_1, v_2, v : x) = \left\{ [F(v_1) + d(v_1, v)B] \bigcap [F(v_2) + d(v_2, v)B] \right\} + 2 d(v, x)B.$$

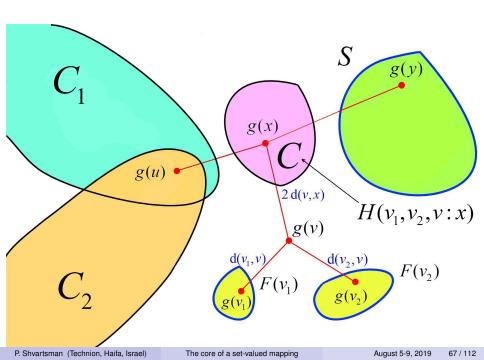
P. Shvartsman (Technion, Haifa, Israel)

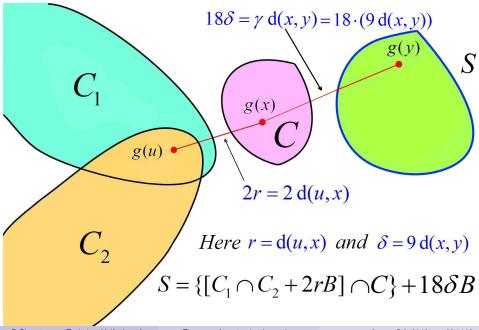
The core of a set-valued mapping











To apply Proposition 12 to the set S we have to check that

 $C_1 \cap C_2 \cap (C + rB) \neq \emptyset.$

We know that the restriction $F|_{\mathcal{B}}$ of F to the set

 $\mathcal{B} = \{u_1, u_2, u, v_1, v_2, v, x, \}$

has a Lipschitz selection $f : \mathcal{B} \to \mathbb{R}^2$ with $||f||_{\text{Lip}(\mathcal{B},\mathbb{R}^2)} \leq 1$.

Then,

 $C_1 \cap C_2 \cap (C + rB) \ni f(u)$

proving that the hypothesis of Proposition 12 holds.

By this proposition,

 $S = (C_1 \cap C_2 + 2rB) \cap C + 18\delta B \supset$

 $[(C_1 \cap C_2) + 2(r+\delta)B] \cap [((C_1 + rB) \cap C) + 2\delta B] \cap [((C_2 + rB) \cap C) + 2\delta B]$ = $A_1 \cap A_2 \cap A_3$.

Prove that

 $A_1 = (C_1 \cap C_2) + 2(r+\delta)B \supset G(y),$

 $A_2 = ((C_1 + rB) \cap C) + 2\delta B \supset G(y),$

and

 $A_3 = ((C_2 + rB) \cap C) + 2\delta B \supset G(y).$

Prove that

$$A_1 = (C_1 \cap C_2) + 2(r + \delta)B \supset H(u_1, u_2, u : y).$$

Recall that

$$A_1 = (C_1 \cap C_2) + 2(r + \delta)B =$$

 $\{F(u_1) + d(u_1, u)B\} \cap \{F(u_2) + d(u_2, u)B\} + 2(d(u, x) + 9 d(x, y))B.$

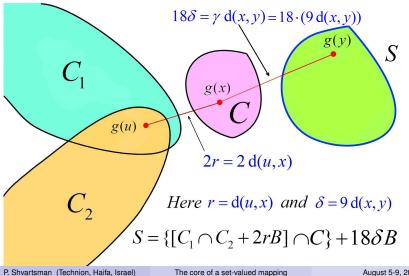
By the triangle inequality,

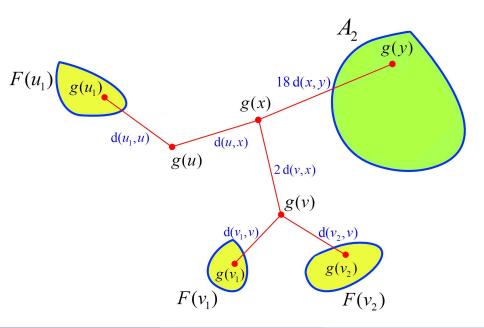
 $d(u, x) + 9 d(x, y) \ge d(u, x) + d(x, y) \ge d(u, y)$

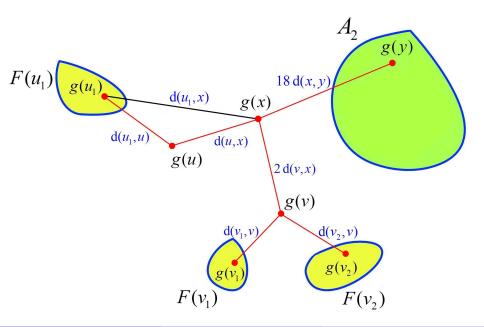
so that

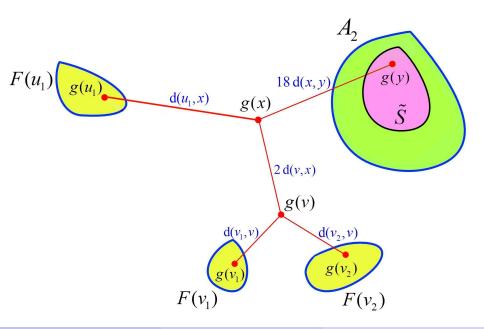
 $A_1 = (C_1 \cap C_2) + 2(r + \delta)B \supset$ $\{F(u_1) + d(u_1, u)B\} \cap \{F(u_2) + d(u_2, u)B\} + 2 d(u, y)B$ $= H(u_1, u_2, u : y) \supset G(y).$ Prove that

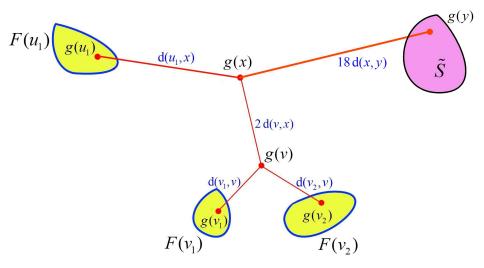
 $A_2 = ((C_1 + rB) \cap C) + 2\delta B \supset G(y).$

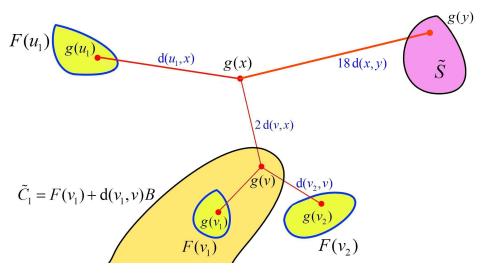


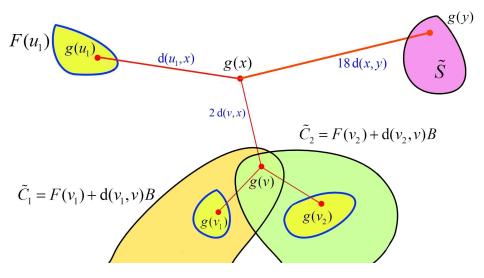


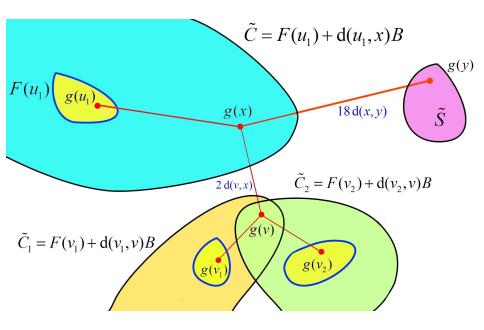


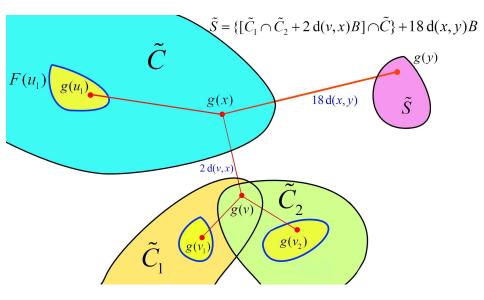


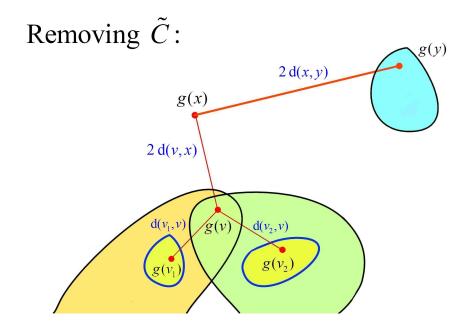


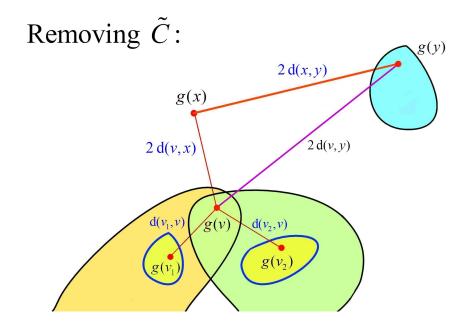


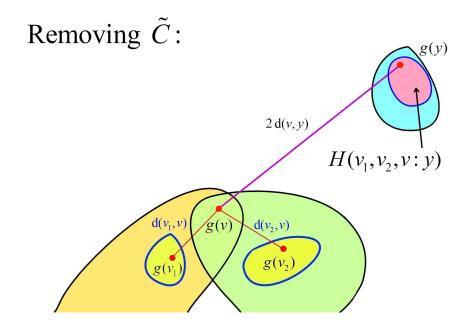












Applying Proposition 12 we obtain the required inclusion

 $A_2 \supset H(v_1, v_2, v : y) \cap H(u_1, v_1, x : y) \cap H(u_1, v_2, x : y) \supset G(y).$

In the same fashion we show that

 $A_3 = [((C_2 + rB) \cap C) + 2\delta B] \supset G(y)$

proving the required imbedding

 $G(x) + \gamma \, \mathrm{d}(x, y) B \supset G(y)$

with $\gamma = 2 \cdot 9^2 = 162$.

By interchanging the roles of *x* and *y* we obtain also

 $G(y) + \gamma d(x, y)B \supset G(x).$

Hence,

$$d_{\mathrm{H}}(G(x), G(y)) \le \gamma d(x, y) = 2^{6} \gamma \rho(x, y), \quad x, y \in \mathcal{M},$$

proving that the set-valued mapping *G* is a $2^6 \gamma$ -core of *F*.

7. Lipschitz Selection in \mathbb{R}^2 : an Algorithm.

The proof of Theorem 6 provides an efficient algorithm for constructing of an almost optimal Lipschitz selection for any set-valued mapping $F : \mathcal{M} \to \mathcal{K}_2(\mathbb{R}^2)$ satisfying the hypothesis of the Finiteness Principle.

- $Y = \ell_{\infty}^2 = (\mathbb{R}^2, \|\cdot\|)$, where $\|x\| = \max\{|x_1|, |x_2|\}$ for $x = (x_1, x_2) \in \mathbb{R}^2$;
- $Q_0 = [-1, 1] \times [-1, 1];$
- "box" or "rectangle" a rectangle in \mathbb{R}^2 with sides parallel to the coordinate axes;
- $\mathcal{R}(\mathbb{R}^2)$ the family of all "boxes" in \mathbb{R}^2 .

• Given $G \subset \mathbb{R}^2$ we let H[G] denote the smallest box containing G:

$$H[G] = \bigcap \left\{ \Pi = [a, b] \times [c, d] \subset \mathbb{R}^2 : \Pi \supset G \right\}$$

Let (\mathcal{M}, ρ) be a pseudometric space, and let $F : \mathcal{M} \to \mathcal{K}_2(\mathbb{R}^2)$ be a set-valued mapping satisfying the following condition:

There exists a constant $\alpha > 0$ such that for every subset $\mathcal{M}' \subset \mathcal{M}$ with $\#\mathcal{M}' \leq 4$ the restriction $F|_{\mathcal{M}'}$ has a Lipschitz selection $f_{\mathcal{M}'} : \mathcal{M}' \to \mathbb{R}^2$ with the Lipschitz seminorm

 $\|f_S\|_{\operatorname{Lip}(\mathcal{M}',\mathbb{R}^2)} \leq \alpha.$

STEP 1. We construct a $2^{6}\alpha$ -balanced refinement of *F*:

$$F^{[1]}(x) = \bigcap_{y \in \mathcal{M}} \left[F(y) + 2^6 \alpha \,\rho(x, y) \,Q_0 \right], \quad x \in \mathcal{M}.$$

STEP 2. We construct a $2^{7}\alpha$ -balanced refinement of $F^{[1]}$:

$$F^{[2]}(x) = \bigcap_{y \in \mathcal{M}} \left[F^{[1]}(y) + 2^7 \alpha \,\rho(x, y) \, Q_0 \right], \quad x \in \mathcal{M}.$$

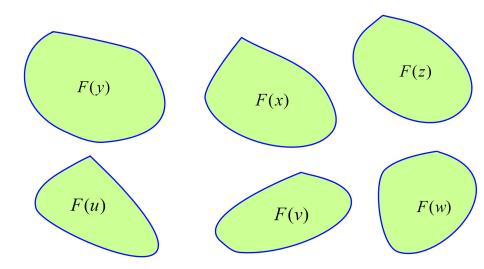
STEP 3. We construct a set-valued mapping $\mathcal{H}_F : \mathcal{M} \to \mathcal{R}(\mathbb{R}^2)$ which to every $x \in \mathcal{M}$ assigns the smallest box containing $F^{[2]}(x)$:

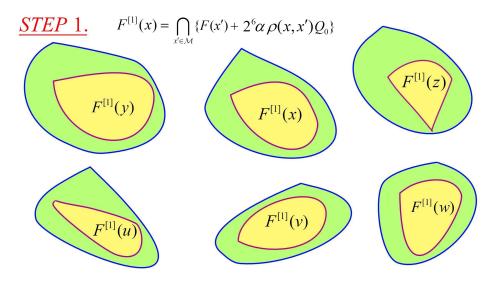
$$\mathcal{H}_F(x) = H\left[F^{[2]}(x)\right], \quad x \in \mathcal{M}.$$

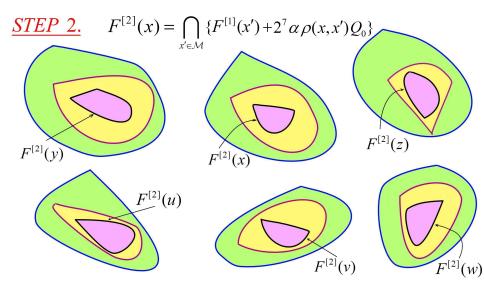
STEP 4. We define a Lipschitz selection $f : \mathcal{M} \to \mathbb{R}^2$ of F by

$$f(x) = \text{center } (\mathcal{H}_F(x)) = \text{center } (H[F^{[2]}(x)]), \quad x \in \mathcal{M}.$$

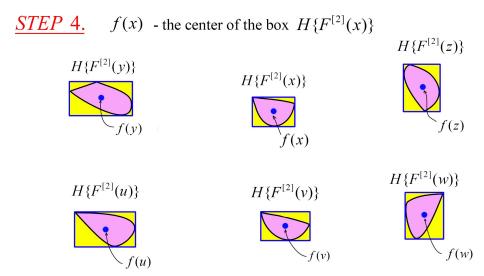
Here given a rectangle $P \in \mathcal{R}(\mathbb{R}^2)$ we let center (*P*) denote the center of *P*.







STEP 3. $H{F^{[2]}(x)}$ - the smallest box containing $F^{[2]}(x)$ $H{F^{[2]}(z)}$



The following statement justifies STEP 3 and STEP 4 of the Algorithm.

Statement 14.

- (1) Let $G \subset \mathbb{R}^2$ be a convex compact set. Then center $(H(G)) \in G$.
- (2) Let $G_1, G_2 \subset \mathbb{R}^2$ be convex compact sets. Then

 $d_{\rm H}(H[G_1], H[G_2]) \le d_{\rm H}(G_1, G_2).$

(3) For every two boxes $P_1, P_2 \in \mathcal{R}(\mathbb{R}^2)$ we have

 $\|\operatorname{center}(P_1) - \operatorname{center}(P_2)\| \le d_{\mathrm{H}}(P_1, P_2).$

(Recall that \mathbb{R}^2 is equipped with the ℓ_{∞}^2 -norm.)

We know that the set-valued mapping $F^{[2]} : \mathcal{M} \to \mathcal{K}_2$ is a γ -core of F with $\gamma = 2^{14} \alpha$, i.e.,

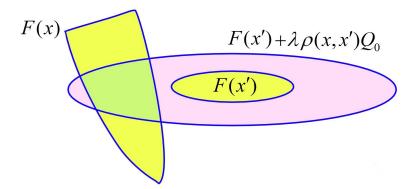
$d_{\mathrm{H}}(F^{[2]}(x), F^{[2]}(y)) \le \gamma \rho(x, y), \quad x, y \in \mathcal{M}.$

Combining this inequality with Statement 14 we conclude that *f* is a Lipschitz selection of *F* with $||f||_{\text{Lip}(\mathcal{M},\mathbb{R}^2)} \leq \gamma$.

8. Criterions for Lipschitz Selections in \mathbb{R}^2

Let $Y = \ell_{\infty}^2$, and let $F : \mathcal{M} \to \mathcal{K}(\mathbb{R}^2)$ be a set valued mapping. Given $\lambda > 0$ and $x, x' \in \mathcal{M}$, let

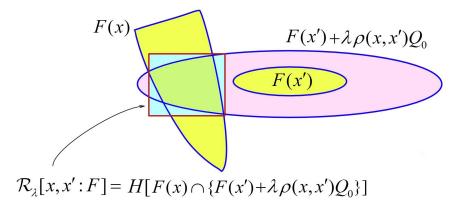
 $\mathcal{R}_{\lambda}[x, x': F] = H[F(x) \cap \{F(x') + \lambda \rho(x, x') Q_0\}].$



8. Criterions for Lipschitz Selections in \mathbb{R}^2

Let $Y = \ell_{\infty}^2$, and let $F : \mathcal{M} \to \mathcal{K}(\mathbb{R}^2)$ be a set valued mapping. Given $\lambda > 0$ and $x, x' \in \mathcal{M}$, let

 $\mathcal{R}_{\lambda}[x, x': F] = H[F(x) \cap \{F(x') + \lambda \rho(x, x') Q_0\}].$



8. Criterions for Lipschitz Selections in \mathbb{R}^2

Theorem 15 (Sh. [2002])

A set-valued mapping $F : \mathcal{M} \to \mathcal{K}(\mathbb{R}^2)$ has a Lipschitz selection if and only if $\exists \lambda > 0$ such that:

(i) $\mathcal{R}_{\lambda}[x, x': F] \neq \emptyset$ for every $x, x' \in \mathcal{M}$;

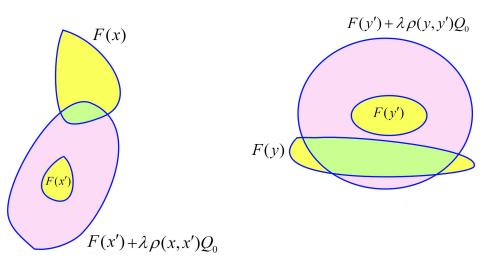
(ii) For every $x, x', y, y' \in \mathcal{M}$ the following inequality

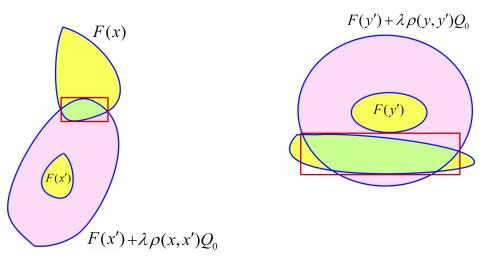
dist $(\mathcal{R}_{\lambda}[x, x':F], \mathcal{R}_{\lambda}[y, y':F]) \le \lambda \rho(x, y)$

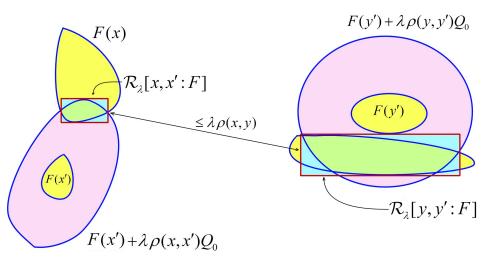
holds.

Furthermore,

 $\inf\{\|f\|_{\operatorname{Lip}(\mathcal{M},\mathbb{R}^2)}: f \text{ is a selection of } F \text{ on } \mathcal{M}\} \sim \inf \lambda$







This criterion follows from a proof of the Finiteness Principle for Lipschitz selections for $Y = \mathbb{R}^2$ given below.

Given a set-valued mapping $F : \mathcal{M} \to \mathcal{K}_2(\mathbb{R}^2)$, we assume that the restriction $F|_{\mathcal{M}'}$ of F to every $\mathcal{M}' \subset \mathcal{M}$ with $\#\mathcal{M} \leq 4$ has a Lipschitz selection $f_{\mathcal{M}'} : \mathcal{M}' \to \mathbb{R}^2$ with $\|f_{\mathcal{M}'}\|_{\operatorname{Lip}(\mathcal{M}',\mathbb{R}^2)} \leq 1$.

Prove that *F* has a Lipschitz selection $f : \mathcal{M} \to \mathbb{R}^2$ with $||f||_{\text{Lip}(\mathcal{M},\mathbb{R}^2)} \le 8$.

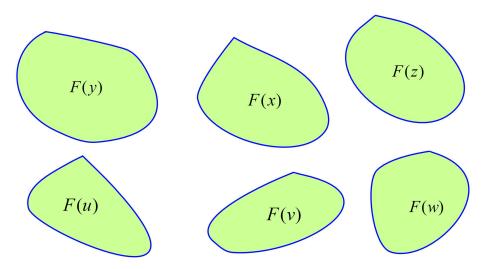
A Sketch of the Proof.

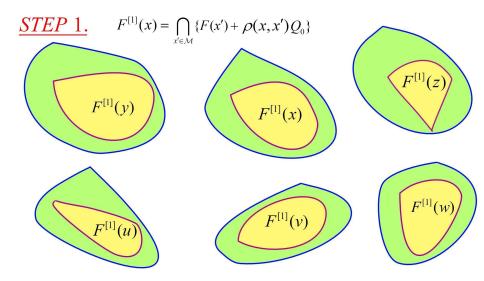
STEP 1. We construct the 1-balanced refinement of the mapping *F*:

$$F^{[1]}(x) = \bigcap_{y \in \mathcal{M}} \left[F(y) + \rho(x, y) B \right], \quad x \in \mathcal{M}.$$

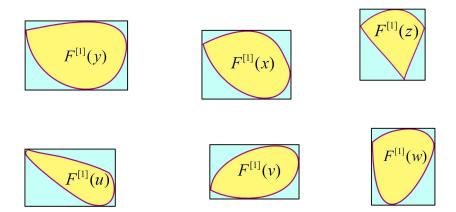
STEP 2. We define a set-valued mapping $\mathcal{T}_F : \mathcal{M} \to \mathcal{R}(\mathbb{R}^2)$ which to every $x \in \mathcal{M}$ assigns the smallest box containing $F^{[1]}(x)$:

$$\mathcal{T}_F(x) = H[F^{[1]}(x)], \quad x \in \mathcal{M}.$$





<u>STEP 2.</u> $T_F(x) = H[F^{[1]}(x)]$ - the smallest box containing $F^{[1]}(x)$



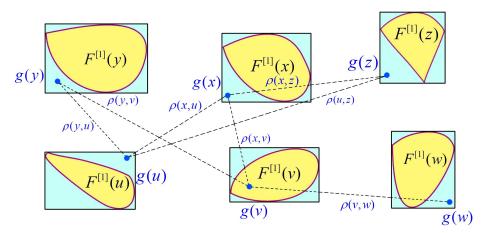
<u>STEP 3.</u> We prove that our assumption (i.e., the existence of a Lipschitz selection on every 4-point subset of \mathcal{M} with Lipschitz constant ≤ 1) implies the following:

The restriction $\mathcal{T}_F|_{\mathcal{M}'}$ of the set-valued mapping \mathcal{T}_F to every two point subset $\mathcal{M}' \subset \mathcal{M}$ has a Lipschitz selection $g_{\mathcal{M}'} : \mathcal{M}' \to \mathbb{R}^2$ with $\|g_{\mathcal{M}'}\|_{\operatorname{Lip}(\mathcal{M}',\mathbb{R}^2)} \leq 1 \iff$

 $dist(\mathcal{T}_F(x), \mathcal{T}_F(y)) \le \rho(x, y)$ for every $x, y \in \mathcal{M}$.

Hence we conclude that there exists a

Lipschitz selection $g: \mathcal{M} \to \mathbb{R}^2$ of the mapping $\mathcal{T}_F : \mathcal{M} \to \mathcal{R}(\mathbb{R}^2)$ with $||g||_{\operatorname{Lip}(\mathcal{M},\mathbb{R}^2)} \leq 1$.



STEP 4. Given a convex closed set $G \subset \mathbb{R}^2$ we let $Pr(\cdot : G)$ denote the metric projection operator (in ℓ_{∞}^2) onto *G*.

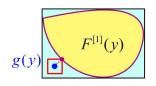
Finally, we define the required Lipschitz selection $f : \mathcal{M} \to \mathbb{R}^2$ by letting

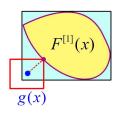
$$f(x) = \Pr\left(g(x) : F^{[1]}(x)\right), \quad x \in \mathcal{M}.$$

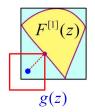
We prove that f is well defined on \mathcal{M} . We also show that

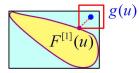
 $\|f(x) - f(y)\| \le 8\rho(x, y)$

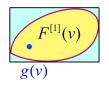
for every $x, y \in \mathcal{M}$ completing the proof of the theorem. \Box

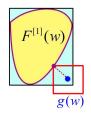


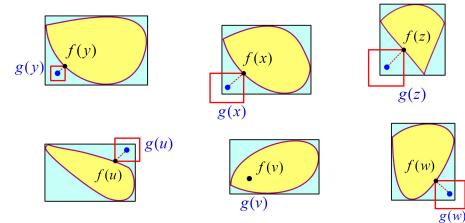












9. An Algorithm for Lipschitz Selections in \mathbb{R}^2

Let (\mathcal{M}, ρ) be a pseudometric space, and let $F : \mathcal{M} \to \mathcal{K}_2(\mathbb{R}^2)$ be a set-valued mapping satisfying the following condition:

There exists a constant $\alpha > 0$ such that for every subset $\mathcal{M}' \subset \mathcal{M}$ with $\#\mathcal{M}' \leq 4$ the restriction $F|_{\mathcal{M}'}$ has a Lipschitz selection $f_{\mathcal{M}'} : \mathcal{M}' \to \mathbb{R}^2$ with the Lipschitz seminorm

 $\|f_S\|_{\operatorname{Lip}(\mathcal{M}',\mathbb{R}^2)} \leq \alpha.$

STEP 1. We construct an α -balanced refinement of F:

$$F^{[1]}(x) = \bigcap_{y \in \mathcal{M}} \left[F(y) + \alpha \rho(x, y) Q_0 \right], \quad x \in \mathcal{M}.$$

<u>STEP 2.</u> We construct a set-valued mapping $\mathcal{T}_F : \mathcal{M} \to \mathcal{R}(\mathbb{R}^2)$ which to every $x \in \mathcal{M}$ assigns the smallest box containing $F^{[1]}(x)$:

$$\mathcal{T}_F(x) = H[F^{[1]}(x)], \quad x \in \mathcal{M}.$$

STEP 3. We construct an α -balanced refinement of \mathcal{T}_F :

$$\mathcal{T}_F^{[1]}(x) = \bigcap_{y \in \mathcal{M}} \left[\mathcal{T}_F(y) + \alpha \rho(x, y) Q_0 \right], \quad x \in \mathcal{M}.$$

STEP 4. We construct a mapping $g : \mathcal{M} \to \mathbb{R}^2$ defined by

$$g(x) = \operatorname{center}\left(\mathcal{T}_{F}^{[1]}(x)\right), \quad x \in \mathcal{M}.$$

STEP 5. We define a Lipschitz selection $f : \mathcal{M} \to \mathbb{R}^2$ of F by

$$f(x) = \Pr\left(g(x) : F^{[1]}(x)\right), \quad x \in \mathcal{M}.$$

Thank you!